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Abstract

The swelling properties of model filled elastomers consisting of crosslinked polyethylacrylate chains mixed with grafted silica

nanoparticles are analysed using a continuous media mechanics approach. We show that the swelling restriction observed in these filled

elastomers cannot be simply explained through the increase of the topological constraints density resulting from the interactions at the

interface between the particles and the polymer chains. Strong interactions at the particle/matrix interface lead to geometrical constraints

which control and restrict the swelling of the polymer network. We propose a model giving an analytical relation between the swelling

properties of the filled elastomer, one of the elastomer without particles, and the volume fraction of solid particles. This model describes

relatively well the experimental data obtained for varying topological constraint density at the particle surface. q 2002 Published by Elsevier

Science Ltd.
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1. Introduction

The addition of fillers in elastomer modifies the

mechanical properties of the polymer matrices. Among

them, the swelling properties are affected by the presence of

particles. Swelling measurement of filled elastomers is a

classical test to detect the density of covalent bonds between

the elastomer and the particles. However, the interpretation

of this measurement is not clear in the literature.

Two kinds of approaches have been developed, in order

to account for the variation of the swelling properties versus

the particle volume fraction and the anchoring of the

elastomer matrix on the particles.

The first one is just based on the following approxi-

mation: all the covalent bonds between the elastomer matrix

and the solid particles contribute similarly to crosslinkers in

the elastomer network. This approach is rather approximate,

but is efficient when the distance between the crosslinkers is

of the same order as the distance between particles, and it

has been applied successfully to the description of the

swelling properties, for instance, in the case of silica/PDMS

systems [1–5]. However, in most of the filled elastomers,

this approach fails, as we will show in this paper.

The other approach consists in making a continuous

description of the problem. It is then assumed that the

elastomer has the same properties with and without

particles. However, since the elastomer is connected to the

solid particles, its swelling is restricted by the boundary

conditions at the surface of the particles. This second

approach is delicate and its description in the literature

requires a non-analytical resolution of the mechanical

problem [6–8]. This description accounts for the covalent

bonds between particles and elastomer via a boundary

condition at the particle/matrix interface which is either zero

stress (no bounds) or zero displacement (bounds). An

empirical model was developed by Kraus [9] predicting the

linear variation of the swelling ratio with f=ð1 2 fÞ where f

is the volume fraction of filler. No analytical expression is

given for this slope which is in practice a free parameter

varying with the nature of the filled elastomers. Moreover,

as the number of topological constraints at the particle/

polymer interface is large, no linear dependence of the

swelling ratio versus f=ð1 2 fÞ is observed [10].

Last, Rehner [11] has developed a model combining the

two kinds of approach. The swelling behaviour is described

by the density of topological constraints including both the
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crosslinks far from particles and the junction points between

the particle and the polymer chains at the interface. But

Rehner distinguishes the effects of crosslinks located far

from the particles to those of crosslinks located at the

particle surface. Thus as the interactions between the

particles and the elastomer matrix are strong, the chain

segment between two topological constraints is smaller at

the interface than in the bulk. Hence, the polymer network

does not swell homogeneously through the whole sample:

the polymer chains swell less at the interface than far from

the particle surface. However, no analytical expression

of the swelling ratio versus the particle concentration is

deduced.

This paper presents a model which gives an analytical

relation between the swelling properties of the filled

elastomer, the one of the elastomer without particles, and

the volume fraction of solid particles. Then we use this

model for analysing the swelling experiments performed on

various model elastomers made up of polyethylacrylate

chains mixed to grafted silica nanoparticles and for which

the crosslinker concentration has been controlled by NMR

results [12,13]. We finally discuss the influence of the

anchoring density at the particle/matrix interface on the

swelling properties.

2. Experimental section

2.1. Sample preparation

2.1.1. Main steps of the filled elastomer synthesis

We will present the main lines of the synthesis which is

described with more details in a previous article [14].

Spherical, weakly polydisperse particles of colloidal

silica with varying diameter were prepared following the

procedure developed by Stöber [15]. Their mean size and

polydispersity were characterized by small angle neutron

scattering [14].

Filled elastomers were prepared from these colloidal

silica solution following the procedure developed by Ford

and coworkers [16–19]. At first short silane molecules are

grafted onto the silica particle surface. Three kinds of non-

polar coupling agents were used: the 3-trimethoxysilylpro-

pylmethacrylate (TPM), the 3-methacryloxy propyl

dimethylchlorosilane (MCS) and the acetoxyethyldimethyl-

chlorosilane (ACS). Quantification of the amount of grafted

coupling agent was determined by elemental analysis

comparing the carbon and silicon contents of the non-

grafted and grafted silica particles.

The dispersion of grafted silica particles is first

transferred to methanol and then to the acrylate monomers

by successive dialysis. Lastly, a photoinitiator (Irgacure,

CIBA) (0.1 wt% to monomer) and a crosslinker—the

diacrylate butanediol (Lancaster)—are added to this dis-

persion in order to achieve the polymerization and the

crosslinking, respectively. The polymerization and the

reticulation of the polyacrylate chains performed under

UV illumination occur simultaneously. From each initial

solution of grafted silica particles, we have prepared a

concentrated silica dispersion in acrylate (around 20% in

volume). This parent solution was then diluted with acrylate

monomers in order to prepare varying silica concentration

samples. Several solutions with varying silica concen-

trations were then obtained and polymerized. For each silica

volume fraction, the concentration of crosslinker was kept

equal to 0.3% per mol of acrylate monomers.

2.1.2. Chemical structure of the particle/polymer interface

Chemical structure of the covering. The TPM molecules

have three reacting groups which can form a covalent bond

either at the silica surface or with other TPM molecules. As

shown by 29Si NMR [14,20] there is a polycondensation of

the TPM molecules around the silica surface. Thus these

TPM molecules form a dense shell around the particles.

Moreover, the amount of grafted TPM molecules can be

larger than the number of hydroxyl groups at the silica

surface.

At the opposite, the MCS and ACS grafts have only one

group that can react with the hydroxyl groups. In this case,

there is no polycondensation between neighbouring coup-

ling agent molecules. The MCS and ACS grafts form

brushes over the particle surface.

The grafting density was measured by elemental

analysis. We can deduce the thickness eG of the grafting

layer applying the following relation

eG ¼
d

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ

6GMG
mol

drGNa

3

s
2 1

0
@

1
A ð1Þ

where MG
mol and r G are the molar weight and the density of

the graft molecules; Na, the Avogadro number; G, the

grafting density and d is the particle diameter.

Interaction of the graft molecules with the polyacrylate

chains. Both TPM and MCS coupling agents have one

methacrylate group which can react with the acrylate

monomers during the polymerisation step. TPM or MCS

silica particles are then covalently bound to the acrylate

matrix. On the contrary, the ACS coupling agent does not

possess such methacrylate ending. The ACS–silica particles

are then not connected to the elastomeric network.

In a previous work we have shown that the final silica

dispersion state depends on the procedure used to prepare

the concentrated silica/acrylate dispersion which is then

diluted in order to obtain filled elastomer with varying silica

volume fractions [14]. We have prepared several sets of

filled elastomers differing by their particle size, the chemical

nature of the grafting agent and the concentration procedure.

Each set of samples corresponds to reinforced elastomers

prepared from the same initial grafted silica solution

following the same concentration procedure. Each set of

filled materials consists of several samples having volume

fraction between 0.06 and 0.2. The dispersion state of the
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silica particles has been characterized by small angle

neutron scattering. The details are presented in Ref. [14].

As shown below the dispersion quality does not deeply

influence the swelling, therefore, we have just indicated in

Table 1 the quality of the dispersion by either good, bad or

very bad. The label ‘good’ means that during the

polymerization the particles ‘repel’ one another. Their

order in the elastomer matrix is the one of sphere with

repulsive interactions. The label ‘bad’ corresponds to quite

disordered arrangement with many particle doublets.‘Very

bad’ refers to samples containing fractal aggregates of

particles. In addition, we have performed 1H NMR

measurements in order to characterize the elastomeric

matrix. The 1H NMR spectroscopy allows to determine

the average density of topological constraints ntot for the

polymer chains [12]. ntot is the sum of three contributions:

ntot ¼ ðne þ nc þ nGÞ: The first two contributions are due to

entanglements ðneÞ and to the crosslinker molecules ðncÞ as

in non-reinforced elastomers. The third one ðnGÞ is

proportional to both silica particle concentration and

grafting density. This third contribution reveals the

connections between the particles and the elastomer matrix.

We have deduced the particle functionality k f N
Si l for each

kind of grafted silica particle which is the topological

constraint density ðnGÞ by silica surface unit. All the

characteristics of each set of filled elastomers are reported in

Table 1.

2.2. Swelling measurements

The maximum swelling at equilibrium of the polymer

networks was determined after extraction of the free chains

contained in the filled elastomer. The extraction was

performed using the following procedure. Chloroform was

used to extract the free chains and to swell the polymer

network. The filled elastomer was washed with chloroform

during one week. the solvent being replaced three times.

The sample was then weighed, immersed in CCl4 and

weighed again in order to determine its equilibrium swelling

ratio Qm which is reached as the weight of the swollen

sample does not increase anymore.

Following the literature, this maximum swelling Qm was

defined as the volume of the maximum swollen polymer

network divided by the initial volume of the crosslinked

polymer chains after extraction of the free chains (Eq. (2))

Qpol ¼
VSW 2 VSi

VD 2 VSi

ð2Þ

where VD is the volume of the samples after extraction of the

free chains; VSW, the volume of the swollen sample and VSi

is the volume of the silica particles dispersed in the sample.

The density of the silica particle was taken equal to 2 g/cm3

[16–19].

3. Theoretical section

When immersed in a good solvent, the elastomer matrix

has a tendency to swell. The equilibrium swelling ratio,

without the presence of particles, is determined by the

balance between the osmotic pressure of the chains and the

stretching of the polymeric network. In the presence of

particles, the covalent bonds between the particles and the

polymer matrix lead to decrease the swelling at equilibrium.

If the particles are not covalently linked to the network,

particles do not restrict the swelling of the elastomer

network. The network undergoes an isotropic dilation

similar to the one of the elastomer without particles. Thus

cavities develop around each filler, that are filled with

solvent, and the formation of this solvent shell does not

restrict the expansion of the elastomer network. Hence the

whole sample exhibits a dilation similar to the one observed

for an elastomer without filler (Fig. 1).

In the case of an elastomer with solid fillers that are

covalently connected to the polymer network, the situation

is different. The elastomer cannot sustain an isotropic

expansion, as it has to remain connected to the particles.

Thus the swelling of the elastomer will be restricted,

Table 1

Characteristics of the reinforced sample sets

Set name Mean silica diameter (nm) Graft type Grafting density, G (nm22) k f N
Si l

e (nm22) Dispersion statea eG (nm) ef (nm)

ACS/H 54 ACS 2 0 Very badb – –

MCS_I/C 45 MCS 1.6 ^ 0.5 2.25 Goodc 0.52 1

MCS_II/H 50 MCS 2.8 ^ 0.5 1.05 Badd 0.9 20.5

MCS_III/H 54 MCS ,1 0.15 Badd ,0.35 25.8

TPM_I/H 50 TPM 3.3 ^ 0.5 1.1 Badd 1.07 1.5

TPM_II/H 54 TPM 7.8 ^ 0.5 2.7 Badd 2.4 4

TPM_V/H 24 TPM 1.5 ^ 0.5 1.05 Badd 1.3 1

a From SANS measurements [14].
b Presence of large aggregates.
c There is an exclusion radius around the particles.
d There is the coexistence of any linear aggregates with single particles.
e From 1H NMR measurements [12,13].
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especially in the vicinity of the particles. On the other hand,

very far from the particles, the elastomer will recover its

equilibrium swelling. Thus the swelling will be inhomo-

geneous in the sample. The mechanical problem is complex,

because the elastomer contains a given volume fraction of

solid particles, and because the relations between the

swelling degree of the elastomer, the stress and the strain

are non-linear. We will assume that the polymer network

can be described by continuous mechanics. This is

reasonable in the case of our filled elastomers because the

mesh size j (6 nm) of the network, is small compared to the

distance between particles—higher than 20 nm typically

[12,13].

Following the literature, but contrary to previous authors

[6–8], we will assume here for sake of simplicity that the

elasticity is linear for the elastomer matrix, taking as the

reference state the elastomer swollen at equilibrium, in

the absence of particles. We will make a self-consistent

approximation in order to take into account the particle

volume fractions. Then the problem will appear to be a

classical problem of elasticity that we will solve. We will

obtain a relationship between the swelling degree of the free

elastomer and the one of the filled elastomer, as a function

of the volume fraction of fillers and the Poisson ratio of the

elastomer.

Self-consistent approximation. Let us first assume that

there is an homogeneous distribution of particles in the

elastomer matrix. We will consider the unswollen state of

the system. We can then build the Voronoi tesselation of the

mass centre of the particles. Each Voronoi polyhedron

corresponds to the points that are closer to the centre of mass

of a given particle, than to any other mass centre. They are

also called Wigner–Seitz cells in the case of crystalline

arrangement. These polyhedra have been shown to possess

around 12 or 13 faces. They constitute a space filling

structure. The idea of the approximation is to replace each

polyhedron by an effective sphere. Each effective sphere

will thus contain a core constituted by the filler, and a shell

constituted by the elastomer network.

Let the radius of the filler be r0, the volume fraction of

the fillers Ff, and the close-packing volume fraction Fcp. It

is reasonable to assume that effective sphere arrangement

constitute a close-packing structure. Thus the radius of these

spheres R0 is given by the relation:

R0

r0

¼
Fcp

Ff

� �1=3

ð3Þ

The elastomer shell has an inner diameter r0 and an outer

diameter R0 before swelling.

Boundary conditions. If now the system is immersed in a

solvent and swells towards its equilibrium, each shell will be

constrained by its solid core. The inner boundary condition

is the following: the elastomer in the vicinity of the particle

will remain at the same position after swelling. The outer

boundary condition of the shell is different. If all the spheres

have the same diameter, they can swell similarly without

restriction at their contacts. More precisely the interface in

between each Voronoi polyhedron will just undergo an

isotropic dilation. Thus, the boundary condition for the

external surface is a zero stress condition.

Strain field. Let us now introduce the displacement field.

We will take as the reference state, the situation in which the

elastomer would have swollen as it has not been connected

to the particles. That corresponds to a shell with an inner

diameter r0Q0
1/3 and an external diameter Q0

1/3R0. The

displacement u is thus equal to zero in this situation. The

swelling ratio in this situation—without particle restric-

tion—is Q0. Let us now introduce the boundary conditions

mentioned above. The first condition is that the elastomer at

the inner surface of each shell is connected to the particles.

In the absence of connector, it would have been equal to

r0Q0
1/3. Because of symmetry the displacement is purely

radial ðurÞ

To connect the swollen elastomer, we must apply a

displacement to the inner cell from r0Q0
1/3 to r0. Thus it

corresponds to a radial displacement ur equal to:

urðr0Q1=3
0 Þ ¼ ð1 2 Q1=3

0 Þr0 ð4Þ

The external boundary condition is a zero normal stress

condition, and thus writes:

srrðQ
1=3
0 R0Þ ¼ 0 ð5Þ

This will determine the external radius Rex of the shell

swollen at equilibrium, in the presence of the filler. This

radius will be the one without the particle minus the

displacement of the surface of the shell.

Rex ¼ Q1=3
0 R0 2 urðQ

1=3
0 R0Þ ð6Þ

The final swelling ratio Q, in this model, will simply be

Fig. 1. Schematic representation of the swelling of a polymer layer

surrounding a particle. (b) Swelling if there is no adhesion between the

particle and the polymer matrix; (c) swelling if there is adhesion.
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equal to:

Q ¼
Rex

R0

� �3

ð7Þ

The elastic problem is thus the problem of a spherical shell

with the two boundary conditions mentioned above. The

problem has a spherical symmetry and the general solution

can be found in classical elasticity books [21]:

The radial displacement writes:

ur ¼ Br þ
C

r2
ð8Þ

where B and C are two arbitrary constants. The radial

component of the stress writes

srr ¼
E

1 2 2s
B 2

2E

1 þ s

C

r3
ð9Þ

where E and s are, respectively, the Young modulus and the

Poisson ratio of the swollen polymer.

Thus we have to apply the two boundary conditions (4)

and (5), to determine the constants B and C. From the value

of B and C, using Eq. (7) it is easy to obtain the final swollen

ratio of the filled elastomer:

QðFfÞ ¼ Q0 1 2
Q1=3

0 2 1

Q1=3
0

3ð1 2 sÞ

2ð1 2 2sÞ þ ð1 þ sÞðFcp=FfÞ

 !3

ð10Þ

In this expression the swollen ratio of the elastomer Q is

smaller than the one of the elastomer without filler. It is

given as a function of the volume fraction of filler, the

Poisson coefficient of the swollen elastomer, the equilibrium

swelling ratio of the matrix alone and the volume fraction at

the random close packing.

Let us discuss our approximation. The models of Rigbi

[8] and Sternstein [6,7] take into account some non-

linearities of the swollen elastomer mechanics but they

require non-analytical resolutions of the mechanical

equations. As we remain in the frame of linear elasticity,

we probably underestimate the unswelling, especially in the

vicinity of the particles where the strain and the stress are

large.

On the opposite, far from the particles the approaches are

similar.

A way to take into account these non-linearities is to

replace the boundary condition—in the linear model—by an

effective boundary condition, in order to match the exact

solution. Here we can slightly shift the radius of the

particles, and then replace in Eq. (10) Ff by F 0
f ¼

Ffð1 þ e0=r0Þ
3; where e0 is a small length. We will see in

Section 4 that e0 is of the order of a few nanometers, and

thus our linear approximation will be validated.

In the experiments that we will present, the particles,

solvent and polymer are weighted and it is thus convenient

to express the swelling ratio as the volume of solvent and the

polymer versus the volume of polymer. This ratio Qpol is

thus the swelling ratio of the elastomer network alone, and

does not take into account the silica particles. This definition

is the one commonly used in the literature for the swelling of

filled rubbers. The relation between the swelling ratio of the

polymer itself Qpol, and of the whole system QðFfÞ is

simply:

Qpol ¼
QðF 0

fÞ2Ff

1 2Ff

ð11Þ

Here F 0
f is the corrected silica volume fraction which

allows the description of the deformation field induced by

the fillers while Ff corresponds to the effective particle

volume.

Finally for systems in which the particles are not

covalently connected to the network, the apparent swelling

ratio Qpol is just:

Qpol ¼
Q0 2Ff

1 2Ff

ð12Þ

This apparent swelling ratio of the polymer alone, is larger

than the ratio of the polymer alone Q0, just because there are

voids around each particles that are filled with solvent. This

solvent in the shell surrounding each particle for the swollen

systems, is taken into account and increases the apparent

swelling of the polymer as already mentioned by Kraus [9].

Finally, our approach presents the advantage to give a

simple expression which relates the swelling of a filled

elastomer with the one of the non-reinforced matrix and the

particle concentration. A parameter e0 is let free in order to

account for some possible effects of non-linearity, but also

for some effects that we will discuss now.

4. Results and discussion

Fig. 2 shows the variation of the ratio Qpol=Q0 at

equilibrium versus silica volume fraction for different series

of filled elastomers.

We consider first the filled elastomers for which there is

no particle/matrix adhesion. It corresponds to the ACS/H

set. We observe that the swelling ratio increases with the

silica concentration. We compare the experimental data to

the theoretical predictions given by Eq. (12). The theoretical

curve in solid line in Fig. 2 agrees reasonably with the

experimental data.

Now we consider the samples for which the particles are

covalently connected to the elastomer matrix. In this case

we have chosen to include in the effective particle volume

fraction Ff the layer composed by the coupling agents

which does not swell. This means that r0 is in this case given

by r0 ¼ d=2 þ eG and the effective particle volume fraction

is then Ff ¼ FSið2r0=dÞ
3 where FSi is the silica volume

fraction. We observed that the swelling restriction increases

with the effective silica concentration. We will now
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compare the data to the theoretical predictions given by Eq.

(11).

The Poisson coefficient was taken equal to 0.33 which

corresponds to the value found by Geisler et al. [22] for

elastomer chains diluted in a good solvent and the close-

packing concentration was taken equal to 0.64.

The silica concentration dependence of the swelling ratio

is well described by our model with the proviso of choosing

an appropriate value for e0. The value of e0 giving the best

description of the experimental curves are called ef and are

given in Table 1 for each sample set. The corresponding

curves are plotted in dashed lines in Fig. 2.

Fig. 3 shows the influence of e0 on the quality of the

description for one representative set of samples reinforced

with TPM silica. As e0 is fixed to zero we clearly see that the

swelling restriction is underestimated by the model. The

deviation of experimental data from the theoretical curve is

larger and larger as the silica concentration increases.

However, this discrepancy remains smaller than 10%. Thus,

ef results from the corrections due to different effects such as

the deformation field, the dispersion state and the influence

of the anchoring density at the interface.

Commonly, the swelling restriction of elastomer

matrices is attributed to the crosslinks connecting the

polymer chains which avoid the extension and the diffusion

of the polymer chains. In a previous paper we have

measured by 1H NMR the total topological constraint

density ntot of our filled elastomers [12] which includes the

covalent bonds due to the crosslinker molecules and those

between the particles and the elastomer matrix. In Fig. 4 we

have plotted the variation of the equilibrium swelling ratio

for pure elastomers with various concentrations of cross-

links versus ntot=ne where ntot in this case is simply equal to

ðnc þ neÞ: We have also plotted the data measured on our

reinforced poly(ethylacrylate) matrices as a function of

ntot=ne with ntot ¼ ðne þ nc þ nGÞ: We clearly observe that

the swelling ratio of the filled elastomers are sensibly lower

than those of the equivalent unfilled matrices as expressed in

term of topological constraint. Thus the swelling restriction

does not depend only on the topological constraints.

In these conditions the approximation that the swelling of

filled elastomers is controlled by the average mesh size j of

the polymer network fails.

However, we observe in Fig. 2 that the swelling ratio

depends on the structural and chemical features of the filled

elastomers such as the dispersion state and the size of the

particles, the grafting density or the nature of the coupling

agent. In each case the experimental data are well described

by our model if we include a polymer layer ef around the

particles which does not swell. All the data superimpose on

a master curve if one plots the experimental data versus the

corrected volume fraction F0
f ¼ Ffð1 þ e0=r0Þ

3 as shown in

Fig. 3. Influence of the value of e0 on the theoretical predictions given by

Eq. (11). e0 ¼ 0 in dotted line and e0 ¼ ef in solid line. (W) experimental

data measured on the TPM_I/H samples.

Fig. 4. Variation of the equilibrium swelling ratio versus topological

constraint density normalized by the entanglement density ntot=ne: ntot and

ne were measured by 1H NMR [7]. (X) non-reinforced ethylacrylate matrix;

(O) MCS_I/C; (K) MCS_II/H; (W) TPM_I/H; (A) TPM_II/H; (P)

TPM_V/H.

Fig. 2. Variation of the normalized equilibrium swelling ratio Qpol=Q0

versus effective silica volume fraction Ff. (V) ACS/H; (O) MCS_I/C; (K)

MCS_II/H; (W) TPM_I/H; (A) TPM_II/H; (P) TPM_V/H. The solid line

corresponds to the description given by Eq. (12). The dashed lines

correspond to the theoretical fitting given by Eq. (11) and adjusting the

value of e0. The corresponding value of e0 are called ef and are given in

Table 1.
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Fig. 5. That means that the swelling ratio is controlled by

this single parameter ef whose value is influenced by the

structural parameters such as grafting density, particle

diameter, dispersion state, etc.

We will successively pick out the effects of these

different parameters on the swelling behaviour.

Influence of the dispersion state. We will focus our

attention on the swelling behaviour of MCS_I/C and

MCS_II/H samples. We observe that the MCS_II/H samples

swell more than the MCS_I/C filled elastomers despite a

higher grafting density. We can conclude that a worse

dispersion state leads to a smaller swelling restriction and

then to a lower value for ef.

Influence of the anchorage density. The swelling

restriction is strongly controlled by the anchorage density

between the particles and the elastomer matrix Considering

the samples of sets MCS_II/H, TPM_I/H and TPM_II/H we

observe that ef increases with the anchorage density kf N
Si l: ef

varies from 20.5 to 4 nm. We deduce that the swelling of

the polymer layer located between r0 and r0 þ j can be

strongly different according to the chemical nature of the

coupling agent and the anchorage density kf N
Si l: A negative

value is observed as the coverage by the graft molecules is

partial (samples of the MCS_III/H set). It could be

associated to solvent ‘hole’ at the particle surface located

where there is no graft molecules.

The equilibrium swelling ratio of filled elastomers is

influenced both by the topological and the geometrical

constraints at the particle/polymer interface. But none of

these two concepts can separately explain the behaviours

observed. The swelling ratio would be overestimated if we

consider only the topological constraint density while the

variation of the swelling ratio with the grafting density

cannot be explained by considering only geometrical

constraints. The results measured on our filled elastomer

show that there is around the particles a polymer layer

whose swelling behaviour is influenced by the covalent

bonds at the particle/matrix interface. According to the

grafting density and the chemical nature of the coupling

agent this polymer layer swells more or less than the

elastomer matrix. However, outside this polymer layer, the

mechanical constraints control the swelling of a filled

elastomer.

The contribution to e0 due to the corrections of the non-

linearities and the dispersion state are negligible. These

contributions do not seem to be pertinent to explain the

swelling behaviour of our filled elastomers, compared to the

effect of grafting on the swelling of the first polymer layer

surrounding the particles.

5. Conclusion

We have analysed the swelling behaviour at equilibrium

of model filled elastomers composed of crosslinked

poly(acrylate) chains reinforced by nanometric grafted

silica particles. The matrix/particle interaction was changed

by varying the chemical nature of the grafting agent and the

grafting density. From previous NMR measurements we

have shown that the mesh size j of the elastomer matrix far

from the particle surface is smaller than the distance

between particles. We show in this work that the swelling

restriction observed in such filled elastomers is not only

controlled by the crosslink density but also by the

mechanical constraints at the particle/matrix interface. We

propose a model using a continuous media mechanics

approach. A free parameter has to be adjusted in order to

take into account the non-linearities and the influence of the

topological constraints at the particle/matrix interface on the

swelling of the polymer chains close to the particle. As a

result the influence of the dispersion state on the swelling is

weak and negligible compared to the effect of grafting.

Moreover, the effect of the mechanical constraints at the

particle surface is modulated by the swelling behaviour of

the polymer layer located near the interface. This polymer

shell of small thickness (,5 nm) swells more or less

depending on the grafting density and the chemical nature of

the coupling agent.
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